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Characterizations of Classical and Quantum Logics 
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In classical logic (Boolean algebras) probability systems involving correlations 
are fully characterized by the system of generalized Bell inequalities. On the 
other hand, probability systems with pairwise correlations on orthomodular lattices 
(OML) representing quantum logics are so general that the only inequalities that 
hold universally are the trivial inequalities 0 <-- Pi - 1, 0 -< Pij -< min{pi, &}. 
In this paper it is shown that every correlation sequence p = (p~ . . . . .  p . . . . . .  
Plj . . . .  ) satisfying the above inequalities can be represented by a probability 
measure on an orthomodular lattice L admitting a full set of {0, 1 }-valued 
probability measures with the additional property that is L ortbo-Arguesian. 

1. I N T R O D U C T I O N  

The problem of  characterizing classical and quantum logics occupies 
the central place in the development o f  the theory of  quantum structures. 
These are two approaches to this problem: lattice-theoretic characterizations 
and probabilistic characterizations. The idea of  lattice characterization is due 
to Birkhoff  and von Neumann (1936), who proposed to interpret the lattice 
of  closed subspaces of  a Hilbert space as a propositional calculus defining 
quantum logic. The fundamental theorem on the lattice characterization of  a 
quantum logic is due to Piron (1964) and McLaren (1964). Following them 
there have been many papers developing this idea; but here we will not 
discuss the results in this direction. 

Another  approach to quantum logic is provided by a probabilistic charac- 
terization and has been introduced by Mackey (1963), who proposed an 
axiom system for quantum mechanics expressed in terms of  the probability 
function characterizing the results of  measurements  for observables and states 
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of the considered physical system. The probabilistic approach seems to be 
more natural from the experimental point of view, since the results of the 
measurements have statistical character and the information about the system 
has, in general, a probabilistic nature. Also the approach of Bell (1964) and 
Clauser et al. (1969) expressing the characteristic properties of classical and 
quantum systems in terms of the inequalities involving the probability of 
events and their correlation fits into the probabilistic framework. The idea 
of characterizing classical probability systems by means of inequalities can 
be found already in a paper of Boole (1862). An algorithm based upon 
Boole's method for the characterization of classical probabilities has been 
developed recently by Del Noce (n.d.). A full analysis of the inequalities 
related to Bell and Clauser-Horne inequalities can be found in a monograph 
of Pitowsky (1993), where the so-called polytope approach is proposed. 

2. CHARACTERIZATION OF CLASSICAL PROBABILITIES 

Here we recall a method for characterization of all probability inequali- 
ties corresponding to a classical system. 

For N = { 1 . . . . .  n } we define the set of Bell functions of order n by 

B(n)= {~.:2n---->{--1, O, 1}[VXCN ~ e(T) �9 {0,1}} (1) 
T~X 

with the convention that e(0) = 0. 
We also define the set of correlation functions of order n by 

C(n) = {PIP: 2u--~ [0, 1] andp(0) -- 0} (2) 

For each e �9 B(n) and each p �9 C(n) let 

L~(p) :-- ~ ~(Z)p(Z) (3) 
TCN 

A correlation function p �9 C(n) is said to be classically representable 
if there is a Boolean algebra A, a probability measure m: A --4 [0, 1], and a 
sequence a~, a2 . . . . .  a, of elements of A such that for each T G N 

We denote the set of all classically representable correlation functions 
of order n by c(n). 

The following theorem has been proved in Beltrametti and Mgczyfiski 
(1993). 
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T h e o r e m  I.  

p e c(n)  c=~Ve e B(n) ,  0---L~(p)--< 1 (5) 

The inequality 0 --< L~(p) <-- 1 defined in (5) is called a Bell-type 
inequality. Hence p is classically representable iff Bell-type inequalities cor- 
responding to p hold for all Bell functions of order n. Theorem 1 can be 
used to generate and verify all Bell-type inequalities. 

In any case we can say that the problem of probabilistic characterization 
of classical logics (corresponding to Boolean algebras) has been fully solved. 

3. N O N C L A S S I C A L  PROBABILITIES 

A generalization of Bell-type inequalities for some orthomodular lattices 
has been recently proposed by L~inger et  al. (n.d.), but the problem of probabi- 
listic characterization of orthomodular logics is far from a full solution. In 
this paper we would like to discuss this problem for the special case of 
correlation sequences involving only pairwise correlations. Using the polytope 
approach of Pitowsky (1989), we will show that in this special case no Bell- 
type inequalities for orthomodular lattices can be found, except the trivial 
inequalities 0 - Pi <- 1 and 0 <-- Pi - Pq <- 1, 0 < pj  - Pij <<- 1. 

Following Pitowsky, instead of the general correlations functions (1), 
we will consider correlation sequences in order n defined only for pairs 
(i, j) belonging to some fixed subset S of the set of all pairs: 

P = (Pl . . . . .  P . . . . . .  P~j . . . .  ) (6) 

where (i, j) e S C {(i, j ) l i  < j ,  i, j = 1 . . . . .  n} .  
The terms of this sequences are real numbers, so p belongs to the 

(n + ISI)-dimensional real vector space R "+~s~. We will denote this space by 
R(n,  S).  

We say that p E R(n,  S) is classically representable if there is a Boolean 
algebra A, a probability measure m: A ~ [0, 1], and a sequence of elements 
at . . . . .  an e A such that 

Pi = m(ai),  i = 1 . . . . .  n 
Pij = m ( a i / x  a2 ) for all (i, j) c S 

The set of all classically representable p E R(n,  S) will be denoted by c(W, S). 
Similarly, we say that p ~ R(n,  S) is quantum representable if there is 

a Hilbert space H, a trace-class self-adjoint operator W of trace 1, and a 
sequence of projections P~ . . . . .  P,  in H such that 

Pi = tr(W Pi) for i = 1 . . . . .  n 
PU = tr(W(Pi/X Pj)) for (i, j) e S 

We denote the set of all quantum representable p E R(n,  S) by q(n,  S). 
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Finally, l(n, S) denotes the "limiting" set of correlation sequences: 

l(n, S) : = {p E R(n, S) l O <-- Pi <-- 1, 0 <<- Pu <- min {Pi, Pi} } 

Pitowsky (1989) showed that 

c(n, S) C_ q(n, S) C l(n, S) 

where c(n, S) is convex and closed, q(n, S) is convex but not closed, and 
l(n, S) is obviously convex and closed. He also showed that 

q(n, S) = l(n, S) 

The sets c(n, S), q(n, S), and l(n, S) are called classical, quantum, and 
limiting polytopes, respectively. The quantum polytope q(n, S) should be 
more properly called Hilbert space polytope, and it is of  course a nonclassical 
polytope. In this paper we would like to consider the most general nonclassical 
polytope g(n, S) corresponding to probabilities defined on a generalized 
probability space. Namely, p belongs to g(n, S) iff there is a generalized 
probability space (L, m), where L is an orthomodular lattice L = (L, A, V, 
• 0, 1) and m is a probability measure m: L ~ [0, 1], and there is a sequence 
of elements a~ . . . . .  an ~ L such that 

Pi = m(ai), i = 1 . . . . .  n 
P i j=  m ( a i f a i )  for (i , j)  ~ S 

For the reason of physical interpretation of L as a space of events we will 
additionally assume that L admits a full set of probability measures, i.e,, 
there is a set {m,~: e~ ~ M} of probability measures on L such that a - b in 
L iff m~(a) <- m~(b) for all a ~ M. This ensures that the order structure of 
L can be defined by probabilities. 

We have obviously 

and 

c(n, S) C q(n, S) C g(n, S) C l(n, S) 

g(n, S) = q(n, S) = l(n, S) 

The main theorem of this paper is as follows 

Theorem 2. 

g(n, S) = /(n, S) 

Theorem 2 states that there is no limitation on probabilities to be repre- 
sented in generalized probability spaces based on orthomodular lattices except 
for the trivial limitations 0 --< Pi < 1 and 0 --< Pij --< min{pi, pj}, contrary to 
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the situation in classical probability theory, where probabilities are restricted 
by Bell-type inequalities. 

An  outline of  the proof  of  Theorem 2 goes as follows. 
Let p = (Pl  . . . . .  P . . . . . .  Pij . . . .  ) E l(n,  S).  

We have to find a representation for p in a generalized probability space. 
We shall consider the cases n = 2, n = 3, and n --- 4 (for n = 1 the theorem 
trivially holds). 

1. The case n = z. We have p = (Pl, P2, Pl2) with 0 <- Pi --- 1, and 0 
<- Pl2  ~ P l ,  0 <- P12 <- P2. We consider an orthomodular  lattice defined by 
the Greechie diagram shown in Fig. 1. This lattice consists of  12 elements 
and is built by gluing two 8-element Boolean algebras 2 I~1'b~'c/ and 
2{a2. b 2, c} SO that the atom c and coatom c I are common  to both (together 
with 0 and 1 elements). For the details o f  building orthomodular  lattices 
from blocks of  Boolean algebras by Greechie 's  method see, e.g., Pfftk and 
Pulmannovfi (1992). 

Figure 1 defines an orthomodular lattice because there is no loop of  
order 3 or 4. We define a probability measure m on Ll2 by setting weights 
on the atoms: 

m(a i )  = 1 -- Pi, i = 1, 2 
m(b i )  = Pi - P12, i = 1, 2 
m ( c )  = P12 

By a theorem in Pt~k and Pulmannov~i (1992), this mapping extends uniquely 
to a probability measure on L12. We now take Al = a~-, A2 = a~-. We have 

m ( A i )  = m(a[ - )  = m ( b i  ~ /  c)  = 1 - m(a i )  

= 1 - (1 - Pi)  = Pi, i = 1, 2 

m ( A l  A A2) = m ( c )  = PI2 

so (L, m) is a representation for p. It is evident that the lattice L12 admits a 
full set of  probability measures, even a full set o f  {0, 1 }-valued probabil- 
ity measures. 

2. The case n = 3. We have p = (Pl, P2, P3, Pl2, Pl3, P23) with 0 --< Pi 

--< 1, 0 --< p;j -- rain{p;, pj}. We define an orthomodular  lattice by the 

Fig. 1. The Greechie diagram of the lattice 
Llz. 

o / b2 
a2 
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Greechie diagram in Fig. 2. By  Greechie ' s  theorem this d iagram defines an 
or thomodular  lattice, since there are no loops of  order 3 and 4 (there is a 
loop of  order 6). We define a probabili ty measure  m o n  L26 as indicated in 
Fig. 2. We take 

AI = a{  = b V c, 

A2 = a~ = b V d, 

A3 = a~ = c V d, 

We also have 

hence m(A1) = 1 - (1 - Pl) = Pl 
hence m(A2) = P2 
hence re(A3) = P3 

m(Al A A2) = re(b) = Pl2 

m(Al A A3) = m(c) = PI3 
re (A2/k  A3) = re(d) = P23 

Hence  (L26 , m) is a representation for p. Observe  that similarly as LI2, the 
lattice L26 admits a full set of  { 0, 1 }-probability measures.  

3. The case n --- 4. For simplicity we shall consider in detail the case 
n = 4; the generalization for higher n is obvious by induction. We have 

P = (Pl . . . . .  P,,  " . . ,  P i j  . . . .  ) (ij) ~ S 
0 < Pi <- l ,  0 <- Pij <- min{pi, pj} 

Consider a Greechie  diagram in the form of  a 2n-gon with n(n - 3)/2 
diagonals. For n = 4 this looks as shown in Fig. 3. This Greechie  diagram 
defines an or thomodular  lattice, since there are no loops of  order 3 and 4. 
We may  assume that S = So = {(i, j ) l i  < j, i, j = l . . . . .  n}, since otherwise 
S can be extended to So by defining Pij - - - -  0 for (i, j )  ~ S0~S. The n u m b e r  of  
elements in this lattice is 

Pl~ P2 - lo12 P2 o,\ 
I - Pl ~ ? P23 

p ~  - P3 
Fig. 2. The Greechie diagram of the lattice L26. 
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1 -- P l  

P l  - lo14 :C .4  

P 2 4  

P12  

d2 

�9 14 / a 2 4  fl13 

P 2  - P 1 2  

P2 - P 2 4  

~13 

1 - P 2  

,P2 - P 2 3  

a23  

P 4  - P 1 4  P 4  - P 2 4  P 3  - P 1 3  

a 4  113 

1 - p ~ C a  b3 1 - P3 

P4  - P 3 4  103 - P 3 4  

P 3 4  
Fig. 3. The Greechie diagram of the lattice L46. 

- lo23 

giving for n = 4 

ILl = 46. 

We denote the lattice of  Fig. 3 by L46. We define a probabil i ty measure  m 
on L46 by assigning weights to atoms as indicated in Fig. 3. We now take 

Ai = a~-, i = 1 . . . . .  4 

We have 

A i A Aj  = a~- A a J- = (b i ~ /a i i )  A (ci ~ /a i j )  = aij for 1 <--- i < j --< 4 

Hence  

m(Ai)  - - - -  m(a~-) = 1 - (1 - Pi) = Pi 

m(Ai  /~ Aj) = m(aij) = Pij 

which shows that (L, m) is a representation for  p. It is not difficult to show 
that the lattice L admits  a full set o f  {0, 1 }-valued probabil i ty measures.  
Hence  p ~ g(4, So) and also p E g(4, S). In this way we have proved Theorem 
2 for n = 4. The case n > 4 is analogous. Hence  Theorem 2 holds for n >- 
2 and this ends the proof.  
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Besides admitting a full set of {0, 1 }-probability measures, the lattices 
used in the proof of Theorem 2 enjoy the additional property of being ortho- 
Arguesian. Following Alan Day and R. Greechie (see Greechie, 1979), we 
say that an orthomodular lattice L is ortho-Arguesian if for any three orthogo- 
nal pairs (ai, bi) E L, i = 1, 2, 3, a i I bi, the elements 

X = (a I V bl )  A (a 3 V bs) 

ci = (aj V ak) A (hi V bk), 
y = c3 A (q V c2) where { i , j ,  k} = {t, 2, 3} 
z = ( a l A ( a 2 V y ) ) V b l  

fulfill x -< z. Greechie (1979) has given an example of an orthomodular 
lattice which admits a full set of { 0, 1 }-probability measures but is not ortho- 
Arguesian, hence it cannot be embedded in the lattice L(H) of closed subspaces 
of a Hilbert space [the lattice L(H) is ortho-Arguesian]. It is not difficult to 
show that all the lattices in the proof of Theorem 2 are ortho-Arguesian [for 
details, see Greechie (1979)]. In this sense they are quite regular, but it is 
an open question whether they are embeddable in the lattice L(H), i.e., whether 
they are standard logics or not. We understand the embedding in the weak 
sense, because the embedding in the strong sense--together with probability 
measures--is not possible. This is due to the fact that the probability measures 
on L(H) have the Jauch-Piron property: if E, F are projections and re(E) = 
m(F) = 1, then m(E A/7) = 1; whereas probability measures used to represent 
p ~ g(n, S) may not have this property. We can even have re(a) = m(b) = 
1 with m(a A b) = 0. This also shows that the difference between g(n, S) and 
q(n, S) lies in a boundary set of probability measures without the Jauch-Piron 
property. For a discussion of this problem see Beltrametti and M~czyfiski 
(n.d.). We conclude with the remark that Theorem 2 shows that the framework 
of arbitrary orthomodular lattices is so general that no restrictions---except the 
trivial ones--are imposed on the values of probabilities, in contradistinction to 
the probabilities on Boolean algebras and Hilbert spaces. This applies to 
probabilities involving correlations for pairs only, leaving the problem of 
representing triple and higher correlations open. 
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